Invariant generators for generalized distributions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parton Distributions for LO Generators

We present a study of the results obtained combining LO partonic matrix elements with either LO or NLO partons distributions. These are compared to the best prediction using NLO for both matrix elements and parton distributions. The aim is to determine which parton distributions are most appropriate to use in those cases where only LO matrix elements are available, e.g. as in many Monte Carlo g...

متن کامل

F-divergence Is a Generalized Invariant Measure between Distributions

Finding measures (or features) invariant to inevitable variations caused by non-linguistical factors (transformations) is a fundamental yet important problem in speech recognition. Recently, Minematsu [1, 2] proved that Bhattacharyya distance (BD) between two distributions is invariant to invertible transforms on feature space, and develop an invariant structural representation of speech based ...

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

Characterizations of Certain Marshall-Olkin Generalized Distributions

Several characterizations of Marshall-Olkin generalized distributions, introduced by Gui (2013) and by Al-Saiari et al. (2014) are presented. These characterizations are based on: (i) a simple relationship between two truncated moments ; (ii) the hazard function.

متن کامل

Invariant Probability Distributions

In this paper, we attempt to answer the three questions about the invariant probability distribution for stochastic matrices: (1) does every stochastic matrix have an invariant probability distribution?; (2) is the invariant probability distribution unique?; and (3) when can we conclude that the power of a stochastic matrix converges? To answer these questions, we present the Perron-Frobenius T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2011

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2011.08.010